quantbullet.research
#
Submodules#
Package Contents#
Classes#
Statistical Jump Model with Discrete States |
- class quantbullet.research.DiscreteJumpModel[source]#
Statistical Jump Model with Discrete States
- fixed_states_optimize(y, s, k=2)[source]#
Optimize the parameters of a discrete jump model with states fixed first.
- Parameters:
y (np.ndarray) – Observed data of shape (T x n_features).
s (np.ndarray) – State sequence of shape (T x 1).
theta_guess (np.ndarray) – Initial guess for theta of shape (k x n_features).
k (int) – Number of states.
- Returns:
np.ndarray: Optimized parameters of shape (k x n_features).
float: Optimal value of the objective function.
- Return type:
tuple
- generate_loss_matrix(y, theta)[source]#
Generate the loss matrix for a discrete jump model for fixed theta
- Parameters:
y (np.ndarray) – observed data (T x n_features)
theta (np.ndarray) – parameters (k x n_features)
k (int) – number of states
- Returns:
loss matrix (T x k)
- Return type:
loss (np.ndarray)
- fixed_theta_optimize(lossMatrix, lambda_)[source]#
Optimize the state sequence of a discrete jump model with fixed parameters
- Parameters:
lossMatrix (np.ndarray) – loss matrix (T x k)
lambda (float) – regularization parameter
- Returns:
optimal state sequence (T,) v (float): optimal value of the objective function
- Return type:
s (np.ndarray)
- initialize_kmeans_plusplus(data, k)[source]#
Initialize the centroids using the k-means++ method.
- Parameters:
data – ndarray of shape (n_samples, n_features)
k – number of clusters
- Returns:
ndarray of shape (k, n_features)
- Return type:
centroids
- classify_data_to_states(data, centroids)[source]#
Classify data points to the states based on the centroids.
- Parameters:
data – ndarray of shape (n_samples, n_features)
centroids – centroids or means of the states, ndarray of shape (k, n_features)
- Returns:
ndarray of shape (n_samples,), indices of the states to which each data point is assigned
- Return type:
state_assignments
- infer_states_stats(ts_returns, states)[source]#
Compute the mean and standard deviation of returns for each state
- Parameters:
ts_returns (np.ndarray) – observed returns (T x 1)
states (np.ndarray) – state sequence (T x 1)
- Returns:
mean and standard deviation of returns for each state
- Return type:
state_features (dict)
- remapResults(optimized_s, optimized_theta, ts_returns)[source]#
Remap the results of the optimization.
We would like the states to be in increasing order of the volatility of returns. This is because vol has smaller variance than returns, a warning is triggered if the states identified by volatility and returns are different.
- cleanResults(raw_result, ts_returns, rearrange=False)[source]#
Clean the results of the optimization.
This extracts the best results from the ten trials based on the loss.
- single_run(y, k, lambda_)[source]#
Run a single trial of the optimization. Each trial uses a different initialization of the centroids.
- Parameters:
y (np.ndarray) – observed data (T x n_features)
k (int) – number of states
lambda (float) – regularization parameter
- Returns:
optimal state sequence (T x 1) loss (float): optimal value of the objective function cur_theta (np.ndarray): optimal parameters (k x n_features)
- Return type:
cur_s (np.ndarray)
- fit(y, k=2, lambda_=100, rearrange=False, n_trials=10)[source]#
fit discrete jump model
Note
A multiprocessing implementation is used to speed up the optimization Ten trials with k means++ initialization are ran
- Parameters:
y (np.ndarray) – observed data (T x n_features)
k (int) – number of states
lambda (float) – regularization parameter
rearrange (bool) – whether to rearrange the states in increasing order of volatility
- Returns:
optimal state sequence (T x 1) best_loss (float): optimal value of the objective function best_theta (np.ndarray): optimal parameters (k x n_features) optimized_s (list): state sequences from all trials (10 x T) optimized_loss (list): objective function values from all trials (10 x 1) optimized_theta (list): parameters from all trials (10 x k x n_features)
- Return type:
best_s (np.ndarray)
- evaluate(true, pred, plot=False)[source]#
Evaluate the model using balanced accuracy score
- Parameters:
true (np.ndarray) – true state sequence (T x 1)
pred (np.ndarray) – predicted state sequence (T x 1)
plot (bool) – whether to plot the true and predicted state sequences
- Returns:
evaluation results
- Return type:
res (dict)